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SUMMARY

i,

In the first part of the ince._qigation aa analysis is made of
base pressure is, an inci.wid fluid, both for two-dlmensional and
axially symmetric flow. It is shown that .for two_timen,,'ional

:low, "and also for the -flow over a body of recolutioa with a
oflindrical sting attached to the base, there are an infinite

number of possible solutions sati._fyi_g all necessa_j boundary
cot_ditions at any gicen free-stream Mach number. For the

parti4u, lar case of a body having no sting attached only one
solution is possible i_ a_ invi._cid -flow, but it corresponds to

. zero base drag. Accordingly, it is concluded tl, at a strictly

ineiacid-fluid theory cannot be _.ati.gactory.for practical ap-

#icaaon,.
An approximate semi-empirical analysis .for base pressure

-in c, vi4wuous fluid is deeeloped in a second part oJ the inoestiga-
_. The semi-empirical analysis is based partly on _inci_cld-

" fl_w calculations. In this theory an attempt is made to allow

for the effects of 3Inch number, Reynolds number, profil¢ shape,
and type of boundary-layer flow. Some measurements of base

pr_sure in two-dimensional and axially symmetric flow are
presented for purposes of comparison. Experimental results
also are presented concerning the support interference effect

o-f a cylindrical sting, and the inter-ference effect of a reflected
bow wave on measurements of base pressure in a supersonic
wind tunnel.

INTRODUCTION

The present investigation is concerned with the pressure
acting on the base of an object moving at a supersonic
veracity. This problem is of considerable practical impor-

tance since in certain cases the base drag can amount to as
much as two-thirds of the total drag of a body of revolution,
and over three-fourths of the total drag of an airfoil. In the

past, numerous measurements of base pressure on bodies of
revolution have been made both in supersonic wind tunnels

and in free flight, but these experimental investigations have
had no adequate theory to guide them. As a result, the

present-day knowledge of base pressure is undesirably
limited and some inconsistencies appear in the existing

experimental data.
Various hypotheses as to the fundamental mechanism

which determines the base pressure on bodies of revoh|tion

were advanced years ago by Lorenz, Gabeaud, and yon
Ktirm/in. (,See references 1, 2, and 3, respectively.) These

t Euper_._des NACA TN 2137, "Ale Analysis of Ba_ Pre,.sure at Supertonl¢ Velocities and

rel, ren,,e t_ mine expcrimen_ net dlscu,_qi therein, end inCOrPOrates s mort detaih,d ana|ysl$

. _. _....,m_.._-_..t_._..--_ll

hyl)ottmscs, which neglect the influei|cc of the boundary
layer, do not, appear to be adequate for lWcdi('ting tlm base
pressure or for correlating experiments.

A semi-empirical theory of base pressure for bodies of
revolution has been advanced by Cope in reference 4.

Cope's analysis and the semi-empirical analysis of the

present report, were developed independently and are similar
in one significant respect; both consider the influence of the

boundalT layer on base pressure. The basic concepts aitd
the details of the two amdyses, though, are entirely differ:m1.

Cope's equations are developed only for axially symmetric
llow, and (lo not provide for the effects of variations in
profile shape on base pressure, tie evah|ates the base

pressure by equating the pressure in tile wake, as calculated
from the boundary-layer tlow, to the corresponding pressure
as calculated fi'om the exterior flow. In calculating the

pressure from the boundary-layer flow, however, several,

approximations and assumptions are necessarily made which,

according to Cop% result in no more than a first approxima-
tion.

TIle primary purpose of the investigat, ion described in the
present report is to fornmlate a method which is of value
for quantitative calculations of base pressure both on air-
foils and bodies. The analysis is divided into two parts.

Part I consists of a detailed study of the base pressure in

two-dimensional and axially symmetric inviscid flow. The
purpose of part I is to develop an understanding of the prob-
lem in its simplest form, and to study the effecis on base

pressure of variations in profile shape. In part II a semi-

empirical theory is formulated since the results of part I
indicate that an inviscid-flow theory cannot possibly be
satisfactory for engineering estimates of base pressure.

A co,nparison of the semi-empirical analysis with experi-
mental results is also presented in part II of the report.

Much of the present material was developed as part of a

thesis, submitted to the California Institute of Technology

in 1948. Acknowledgment is made to H. W. Liepmann of
the California Institute of Technology for his helpful dis-
cussions regarding the theoretical considerations, and to
A. C. Chart_'rs of the Ballistic Research l_boratories for

making available numerous unpublished spark photugral)hs

which were taken in the free tlight, experiments of refe|'cm:e 5.

Comparison with Experiment," by Deta R. Chtpmta, 1950. The present report includes
of the ellecta of variations in profile sb*pe on b_te presstJre in h_vh_cid _ow. 3"
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NOTATION
C constant

d rod or SUl)l)ort diameter
h base thickness (base diameter for axially symmetric

flow, trailing-edge thickness for two-dimensional
flow)

L length upstream of base (body length for axially sym-

metric flow, airfoil chord for two-dimensional flow)
.'tt Mach number

p pressure
P pressure coefticient referred to free-stream conditions

"1- -- 2
_p.U.

Pd base pressure coefficient referred to conditions on a

Pa_ base pressure coefficient for maximum drag in inviscid
flow over a semi-infinite profile

P_* value of P6' obtained by extrapolating to zero boundary-
5

layer thickness the curve of P_' versus _

q dynamic pressure (2, U' )

R gas constant

Re Reynolds number based on the length L
r radial distance from axis of symmetry to poi'nt in the

flOW

if' temperature

t thickness of wake near the trailing shock wave
U velocity

angle of boattailing at base
,), ratio of specific heats (1.4 for air)

boundary-layer thickness

p density

SUPERSCRIPT

' conditions on hypothetical extended afterprofile aver-

aged over a region occupying the same position
relative to the base as the dead-air region

SUBSCRIPTS

® conditions in the free stream
b conditions at base

o stagnation conditions

I. BASE PRESSURE IN AN INVISCID FLUID

Throughout this part of the report the effects of viscosity
are completely ignored and the flow field determined for an

inviscid fluid wherein both the existence of a boundary layer
and the mixing of dead air with the air outside a free stream-

line are excluded from consideration. It is assumed through-

out that a dead-air region of constant pressure exists just
behind tht. base and is terminated by a single trailing shock

wave. As will be seen later, the assumption of zero viscosity

oversimplifies the actual conditions; the rcsuhs obtained with
thi-_ assumption agree qualitatively with a nunlber of ex-

perimental results, but provide quantitative information
only on the effects of profile slmpe on base pressure.

TWO-DIMENSIONAL INVlSClD rI,OW OV£II A SZ,',II-INeI._ITE PliOFILE

In order to achieve the grcatcst possible simplicity at the
outset, the case of a semi-infinite profile will be considered

lirst. By this is meant a profile of constant thickness which
extends from the base to an inlinite distance upstrcam

(fig. 1). The problem at hand is to determine the ltow pat-

tern in the neighborhood of the base. Since the effects of

viscosity are at present ignored and only steady symmetrical
flows are considered, the problem is simply that of determin-

ing the flow over a two-dimensional, flat, horizontal surface

which liars a step in it (fig. 2).

--.,,. "-.Dead ate"

Ft(_calt l,--_.,mtdnfln|te profile.

_[///////[/[]//////]]//llll//I/I/I//////ll]l_/[/lllllll/lllllllll¢

FlGtrlglt 2.--Example of inviseid fl0w over s two.dimensional profile.

It is easy to construct a possible flow pattern which satisfies

all necessary boundary conditions including the requirement
of constant pressure in the dead-air region. For example,

suppose the free-stream Mach number is 1.50 and some

particular value of the base pressure coefficient, say
Pb=--0.30 (Trip.=0.53), is arbitrarily chosen. Since the

base pressure is prescribed, the initial angle of turning
through the Prandtl-Meyer expansion (fig. 2) is uniquely

determined, and in this particular case is equal to 12.4 °

at 13. The pressure, and hcncp lilt. w,lo,'ity and .M.ch 1511155-

ber, must be constant _lh)ng the free stl'caunline BC. For

the example under consideration, the Math number .long

the free streamline is calculated from the Prandtl-.\h,ycr

equations to be 1.92. For u uniform two-dimensiomd llow
over a convex corner, tlw pressure dcpcnds only on the angh,
of inclination of a streamline, hem.e it follows that BC is

a straight line. The triangh, BCE therefore bounds a region

of uniform flow haviug the same pressure as the dead-air
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region. As the trailing shock wave (fig. 2) extends outward
from F to infinity, interference fi'om the expansion waves

gradually decrelues its strength until it eventually becomes a
XIach wave. That part of the shock wave from C to F"must

deflect the flow throltgh the saine angle as the expansion

waves originally turne(l it (12.4 ° for the particular example
tinder consi(leration). This deflection certainly is possible

since the ._,Iach number in the triangle BCE is 1.92 _hich,

according to the well-known shock-wave equations, is capable

of undergoing any deflection smaller than 21.5% As the
tlow proceeds downsti'cam from the trailing shock wave

C E F, the pressure approaches the Dec-stream static pressure,

thus satisfying the boundary condition at infinity.
It is evident that a possible flow pattern has been con-

structed which satisfies all the prescribed requirements as

well as the necessary boundary conditions. This flow, how-

ever, certainly is not the only possible one for the particular
._Iach number (1.50) under consideration, since any negative

value of P_ algebraically greater than --0.30 also would
have permitted a flow pattern to be constructed and still

satisfy all boundary conditions. This is not necessarily

true, though, if valfies of P_ algebraically less than --0.30
are chosen, as can be seen by picturing the conditions that

would result if the base pressure were gradually decreased.

The angle of turning through the Prandtl-Mcyer expansion
would increase and point C in figure 2 simultaneously would
move toward the base. The base pressure can be decreased

in this manner only until a condition is reached in which
the shock wave at C turns the flow through .the greatest

angle possible for the particular local .Mach number existing

along the free streamline• The base pressure cannot be
fprther reduced and still permit steady inviseid flow to

exist. The flow pattern corresponding to this condition of
a maximum-deflection shock wave can be considered as a

"limiting" flow of all those possible. There are obviously
an infinite number of possible flows for a given free-stream

Mach Number, but only one limiting flow.

The limiting value of the base pressure coefficient can be
calculated as a function of the free-stream Mach number by

reversing the procedure described above for constructing

possible flow patterns. Thus, for a given Value of the local
Mach number along the free streamline a limiting flow pat-

tern can be constructed by requiring that the angle of turn-

ing be equal to the maximum-deflection angle possible for
a shock wave at that particular local Mach number. By

use of the Prandtl-Meyer relations the appropriate value of
the free-stream Mach number is then directly calculated

from the angle of turning and the local Mach number along
the free streamline. This process can be repeated for differ-

ent values of the local Mach number along the free stream-
line and a curve drawn of the limiting base pressure coefficient

as a function of Math number. Such a curve is presented

in figure 3. The shaded area represents all the possible
values of the base pressure coefficient for two.-dimcnsional

invi,_cid flow. The upper boundary of the shaded area

corresponds to the limiting flow condition for various free-
stream Mach numbers.

There is no reason a priori to say that for a given M.

the limiting flow pattern represents that particular one
which most nearly approximates the flow of a real fluid.

VELOCITIES AND COMPARISON WITH 'EXPERIMENT

Moch r_an_ber

FIGI_al 3.--Ba_ pressure for two-dlmensiona] Inviscld flow.

The curve representing these limiting flow patterns can be
considered simply as being the curve of maximum base drag

(and hence maximum entropy increase) possible in an in-
viscid flow. This is the only interpretation that will be

given to this curve for the time being. Since it is these
limiting solutions which will be singled out later for further

use, a special symbol P,j will be used to designate the base

• pressure coefficient of such flows. It is evident from figure
3 that in the Mach number region shown the values of P_

for two-dimensional flow correspond to very high base drags,

being almost as high as if a vacuum existed at the base.
At Mach numbers greater than or equal to 6.0, the values

of P_t exactly correspond to a vacuum at the base.

AXIALLY SYMMETRIC INVISCID FLOW OVER A SEMI-INFINITE BODY

In principle the same method of procedure can be used

for inviscid axially symmetric flow as was used for inviseid
two-dimensional flow. The axially symmetric flows, how-

ever, are'somewhat more involved than the corresponding
two-dimensional flows. For example, in axially syinmetric

flow the expansion wavelets issuing fronl the <.urnl,r of the

base are not straight lines as Ihey arc in Prandll-.M,,ver
flow. ,Moreover, additional coniplications arise sincl. Ihe

flow conditions upstream of the trailing shock wave do not

depend solely on the inclination of the streatnlincs at a

given point, but depend on the whole history of the flow

upstream of the Math lines passing through that point.
As a consequence of these complications, the free strcamline

of constant pressure cannot be straight.
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]n order to construct pos,,4bh> flow pat terns as was done iu

the two-dimensional case, the method of (.hara(,t(,risiics re,"

axially synunctric flow must be used. The details of the
partieula," characteristics method employed are described in

reference 6. B)" employing the characterislics method the

inviscid flow field correspon(ling to a given base pressu,'e can

be colkstructed step by step re," any given value of the Math
number. The shape of the free streamline is, of course,

determined by the con(lition that` the pressure and the
velocity must be constant along it,. An example of such a

construction for a free-stream .Mach number of 1.5 is given in
figure 4 (a). In this particular ease, the base pre.¢sure

Uniform pressure Pb r.0.552 rl

I

Axis of symrne fry .___

(=l
(a) i,D-]._; P6---0.25.

I"I6vRIr.4.--Typical Maeh nets Io¢ inviacid flow over the base el * semi-infinRe body tff
revolution.

coefficient` which has been chosen arbitrarily is --0.25. It is

to be noted that there is a striking difference between the
axially symmetric flow (fig. 4 (a)) and the two-dimensional

flow (fig. 2). The inviseid flow pattern for the axially
symmetric case cannot be constructed all the way to the

axis of symmetry and still satisfy the prescribed boundary
conditions. This is a consequence of the curvature of tile

free streamline and the fact, that the .Mach number along
the free streamline in the case under consideration is 1.84,

which, at the most, is capable of deflecting a streamline only

19.9 ° by a single shock wave. As is illustrated in figure
4 (a), the angle of inclination of the free st`reaml[ne for this
example is already 19.9 ° at a value of r/r_=0.552, where r is

the radial distance from the axis and r,-----h/2 is the radius of
the base. Since the angle of inclination of the constant-

pressure free streamline would continue to increase nmno-

tonically as the axis is approached, the flow patlt.rn of
figure'4 (a) cannot` be constructed farther than the point
shown (r/r,=0.552) and still permit the (low to be dcfleclcd

through a single shock 'wave and become paraIM to lhc axis

of symmetry. This phenomenon is not aHributable to the

particular combination of Math numher and base pressure

,,_,h.cted for figure 4 (a). In figures 4 (b), 4 (c), and 4 (d),
,,chef examples are presented which ilhLstrate the flow for
,till'trent values of Mach number and for different base

pressures. In each case the free streamline has been ter-

\\\\\\"_

-\\\\"

\'x\\\
0.875 r,,

[bl
( _} ),1¢ -2 -%: I'=- -(I.215.

(e) .%[: -2.S, P,---O.ll.

(d) o.o_ s,, r
(d)AI=_-4.0; P*- --O.O_,(Wk

Fie.URz 4.--Concluded.

minated at the point where the local angle of inclination is

equal to the angle corresponding to the greatest possible
deflection by a single shock wave. It is evident that none
of these flow patterns could he constructed down to the axis

of s vninleti'v. Ahogell,cr, l, llliroxiuiai,.ly 30 ihm lilili,,i-li._

were couslrueled by Ilie clilii'llclCl'i_lil's llltqhoii; in lio c,lse

touhi lhe flow he constru(.ted all Ihc _vli)" to the axis.
The flow pailerns buih il l) llv liie Inl,llio(I of characlei'i:qics

should not be regartled as uni'l,ali_ih. ,_iinllly bccausl, Iht. Jhlw
cannot lie construclell all Ihc way to Ihe axis. Ill a real

fluid the flow outside the ilounthn.y ]a)'er is siniilar liecause
the wake behind the hod)" fills the region nciir Ihe axis and

prevents the outer flow froln reaching the axis. This fact

suggests that the axially symmetric inviscid-flow patterns
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should be investigated further as Ilwy might bear some
relation to actual tlows if tile disl)laeement effect of thc wake

were considered.

The flow tields containing a free streamline not meeting

the axis of symmetry can be considered as those that, wouhl
exist in inviscid flow about a body of rcvohition which has an

infinitely long cylimlrical rod (or "sting") attached to the
base. As an example, the flow of figure 4 (a) would corre-

spond to a body having a rod of diameter d=0.552h attached
to the base. (See fig. 5.) With such a model the trailing /.o
shock wave turns the free streamline through the greatest

deflection .possible for the given local Math number along
the free st!'camline. The flow fiehl is therefore the limiting

flow field of all those possible for the given free-stream Mach

number and the given ratio of d/h.

-e

• M**= £ 5 .,_ .4

99" l

rlouRt 5.-Aaially symmetric semi.infinite body with rod attached.

Just as in the case of the two-dimensional body, there are

also an infinite number of possible flow patterns for the body
of revolution with a rod attached. This is true because for

a given configuration as many additional flow patterns as
desired can be constructed by simply selecting the base

pressure to be any pressure between the free-stream pressure
and the pressure corresponding to the limiting flow. The

limiting flow pattern is to be given the same physical sig-

nificance for axially symmetric flow as for two-dimensional
flow; that is, the corresponding base pressure coefficient

P,_ represents the maximum base drag possible for an inviscid

flow with a single trailing shock wave and a given ratio

of d/h.
By choosing different values of the base pressure co-

efficient for a fixed Maeh number, the inviscid solutions

determined by the method of characteristics enable a plot

of P_ against d/h to be made. This procedure has been

carried out for Maeh numbers of 1.25, 1.5, 2.0, 2.5, 3.0,
and 4.0. The rcsuhs are shown in figure 6. Each point on

the curves in this tigure represents one flow pattern con-
structed by Ihe characteristics method. The values for

d/h=O correspond to the semi-infinite body without a rod
attached. It is to be noted that for each curve in tigure 6

the value of 1)_, extrapolates to zero as d/l_ approaches zero.

This means that the base lU'essure is equal to the free-

stream static pressure, the free streamlinc is undetlected,
and the base drag is zero." Itence, the lhniting llow pattern

AND COMPARISON x,VITH EXPERIMENT

/ I/'11
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80dy Glioc'neflPr _ h
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/
/
/
t.25
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FlOultl 6.--Parameter proportional to the maximum base drag possible In. an invi._eid axially
$ymmetrI¢ flow.

and the infinity of possible inviscid flows for O<d/h<l

degenerate into a single trivial solution corresponding to
zero base drag for d/h=O. This behaviour appears anoma-

lous on first thought, particularly when one remembers

that the coefficient Ph represents the maximum possible

base drag that can exist for an inviscid flow of the type
being considered. An explanation can be obtained from a

consideration of the equations of motion since they are the
basis for the method of characteristics. This explanation,

however, is not essential for an understanding of the main

conclusions regarding base pressure, and hence is presented

as Appendix A.
In figure 6 the limiting values as d/h approaches 1.0

correspond to the previously treated case of two-dimensional
flow. It can be seen that this must be the case by visualizing

the limiting process as taking place w_th both d and h

approaching infinity, but with the difference (h-d) held
constant. Tile (.onfigm'ation approached in this manner
would be a two_li,nensional step (,f height (I,-d) 2; hence

the pressure coctfLcient approached would be tl,e If,airing

base pressure eoetficient for two-dimensional inviscid tlow.
On the other hand, if dlh is equal to unity (instead of ap-

proaching it,.from values ahvays less tlmn units), tl,.n the
corresponding configuration wouhl be a semi-inlinite body

of revohttion with a cylindrical rod of tile same diameter
attached to the base. Althottgll no dead-air region exists
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in this latter case sitice the flow is everywhere uniform, the

base pressure in the physical sense wouhl be the static

1)ressure at. the junction of body and rod, and hen('e 1'_
wouhl be zero.

The occurrence of more than one possible solution in

two-dimeaxsional flow and also in axially symmetric flow
with a r0(l attaehe([ does not represent, a new occurrence in

inviscid flow theory. A similar situation occurs, for ex-

ample, in airfoil theory for an inviscid, incompressible
fluid. As is well known, a satisfactory solution in this case
has been found in the use of the so-called Kutta condition,

which can be readily justified on the basis of qualitative
consideration of viscous effects near the trailing edge.

Apart from the effects of viscosity several other consider-
ations, su.ch as stability of the tlow, also have been of

importance in .other urn'elated prol)lems when selecting a
suitable inviscid flow sohltion from a possible choice of

more than one. ,ks an example of this, the inviscid channel

flow studied in reference 7 may be cited. For the present
problem, however, the preceding anal');sis of axially sym-

metric inviscid flows points toward viscous effects (rather
than stability of inviscid flow) as being the essential mechan-

ism determining the base pressure. ]]efore considering

viscous effects, however, the effect on base pressure of vari-
ations in profile shape will be analyzed in detail since experi-

ments have indicated widely different results for various

profiles. The method presented later for correlating base

pressure data requires that the measurements first, be cor-
rected for the effect of profile shape. In the section which

follows equations are developed for such a correction.

TWO-Di,'%IENSIONAL ANn AXIALLY SYMMETa|C INV|SCID FLOW OVER

rmiT_.FaO_Lm

In thissectionconsiderationis given to the flow over a

finite two-dimensional profile concurrently with that of a

finite body of revolution. For either type of flow, the
presence of the profile causes the Mach number and pressure

in the flow field ahead of the base (M, p) to be nonuniform
and different from free-stream conditions (M,, po). This

is illustrated in figure 7 (a) for a profile without boattailing.
As a result of the disturbance caused by the profile, the base

pressure depends on profle shape even in an inviscid flow.

In this section, a method is developed for calculating cor-
rected free-stream conditions (M', p') to which the base

pressure can be refen'ed and be nearly independent of profile

shape. This method does not depend on the magnitude of
the base pressure or on the dimension d (fig. 7 (a)), and hence

is useful in comparing experimental measurements made on
various airfoils and bodies of revolution.

To fix ideas, the Math lines shown as dotted lines in figure
7 (a) will be thought of as representing weak pressure

waves; those with positive tangents (e. g., DD') being mem-

ber's of the so-calh,d first family, and those with negative
tangents (e. g., DA) being menlbers of the so-called second

family. Weak pressure waves issuing from the body can

affect the base pressure in several ways. For example,
waves of the first family starting between D and E not only

affect conditions at A, but also affect conditions between A

g

_ /%'%.

D// %'\

/,, ;:,, ,,, /,.
//I \, ', ,,,,,-,
/ ii ',,.. ,

_/-_p® / I i _ _"P >.',/," /

/ l /_ ',A&<'', /
Ol tE _ _

"Pb _"

(J)

#.1#1#'

I" G /# Hypotheh¢ot

/ ' / _. ofter/;_'ofHe.y

(b)
(a) Finite profile.

Co) Finite pcofile with eltended dterproflle.

Fmuai 7.--Skew,,b of Inviscid flow over finite profile without bonita]ling.

and G. Such waves reflect from the bow shock wave be-
tween D and _ and then become members of the second

family of waves between DA and E'G which directly interact

with the dead-air region. Waves of the second family

beyond _G would not affect the base pressure in an inviscid
flow. The net effect, of profile shape on the base pressure of

a finite body, therefore, will be determined both by condi-
tions at h and by the variation of conditions between h and

G. If a hypothetical afterprofile were extended from the

base, as illustrated in figure 7 (b), then such conditions
would cause the average pressure (p') and Mach number

(M') along AH of the extended afterprofile to differ from the

corresponding free-stream conditions. These differences
would represent the disturbance field induced near the base

by the profile shape, and the base presstlre referred to 3I' and

p' (e. g., a curve of P_' or PUP' versus ._tr) could be regarded
as corrected for the effects of profile shape in inviscid flow."
By applying the compatibility equations of the method of

characteristics for either two-dimensional or axially sym-
metric flow to the triangle AGH in figure 7 (b), it can be
deduced that the magnitude of the velocity averaged at
pohits A and H is apl)roxhn_ii('ly equal It) the niagnilude of

the velocity at point 0. Thlis, .1[ I and ]/can be evtliiilll[_l
either from conditions along a hypothetical e.xtended after-
pro_le, or else from condhions at an apllropl'iale point (G) hi
the flow over the given profile.

A second case to be considered is that of a profile having a

I It may be notKI that ,It r' alld p' are analogoos In _.ome respects to the corrected free-_tream ._,flch Dumber and pressure used in subsonic wind-tunnel opt'ration: the former represent Ihe

average .Math nt_mhcr and presaure induced in I he vie n ly of the t_i,.* hy the pr, _'_.nce nf I hp IMrollle; whefe_ the ]alter repre._nt the at'erale Mach number and l_ri'._su?e lnducvd in the ".'iculily

of the test model by the pre_¢nor of the tunnel wslls. Both corrections are _0curate only when the ladueed distutbe_ce field l= am_il =rod app¢ogimately ma|lorm over the region In queltioa.
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negative boattail angle (_), as illustrated in figure 8 (a).
Tiffs flow can be converted to an equivalent flow over a

profile without boat tailing having the same I)ase pressure
as tile flow of figure S (a) and certain nonuniform conditions
ahead of the base. This equivalent flow, illust,'ated in figure

S (b), is identical to the type ah'eady considered and is such
that the ttow within C'O'G' coincides with the flow within

COG in figure S (a). Point G, therefore, is defined by the
intwseetion of the Math line passing through C, and the

particular Mach line passing through O on which the ve-

locity vector at O is paralld to the free-stream direction.
Hence, for this second casc also, .'ll' and 1/ can be deter-

mined approxinmtely either from conditions on a hypo-
thetical extended afterprofile, or else from conditions in the

original flow at point G.

/

/ j_.,s S

_;p_2__ G'/.

(") M)
(a) 0<0. (b) Equivalent flow for 0<0.

(¢) lt>.0. (d) Eqtlivalertt flow for g>0.

F]GU_£ &--Sketch of inviseld flow in vicinity of ba_ for profiles with Ixmttailing.

A third and last case to be considered is that of a profile
having a positive boattail angle, as illustrated in figure 8 (c).

This flow also can be converted to an equivalent, flow over a
profile without boattailing having the same base pressure

as the original flow (fig. 8 (c)), and certain nonuniform con-

ditions at{cad of the base. As sketched in figure 8 (d),

,.he equivalent flow ahead of the base is such that the con-
ditions downstream of O'J" are identical to conditions down-

stream of OJ in figure 8 (c)? Thus for B>O, M' and p' can

be determined approximately from conditions at G' in the
, equivalent flow, or else from conditions along a hypothetical
profile extended downstream from O', but M' and P' do not

necessarily exist at any easily determined point in the

original flow.
For any profile the relationship between the base pressure

coefficient P,'m (pb--p')/q' which corresponds to the Mach

number :11', and the base pressure coefficient P, = (p_,--p.)/qo
which corresponds to the .Mach number M. and to the given

profile, is given by the equation

P' = q" (P_-- P') ( 1)
(j'

where

P'=(P'TP-)/q- (2)
tSuch an equivalent flow can rt'tulily be constructed if the ,Maeh number on the surface

ll;sure sui>ertoni¢ velocities along O'G' in the equivalent flow.

and, if the profile disturbance fidd is small,

q' /'_1"2 1"_ p,__2
--=1+,., -- / (1+_ -'_ .l[.a)/_ ° ,3_q. ., . 7M.'

In this last equation (derived in al)lwndix C), .ll,o/po is th,'
fra('lioual loss in total im,ssurc on passing throug!t tilt, bow

wave. if the ratio pdp. is used instead of the coat, cleat/',.
the analogous relation between tlw ratio pdp' and pdp.

obviously is

p__ 1 p_ (4_£- v.
For a given profile, these equations enable a curve of P/ (or

p_/p') ve,.'sus 51' to be plotted if a curve of l'b (or pdp.!
vv,.'sus M. is known.

In order to furll|er clarify the concept of the disturb,,n,.t.

tMd i,Mueed by prolile shape, and also to illustrate the
magnitude of the variations in base pressure that might be

expected between different profiles, some representativ|,
calculations of M' and p' have been prepared in tables I, II.

and 1II. For sim.plieity in these calculations, M' and p°
have been evaluated along the hypothetical extended after-

profile at a distance h behind the base position, rather than
to use in each case a more involved a,,:erage over the appro-

priate extent of dead air. Table I applies to two-dimen-
sional flow over the particular profile shown. The compu-
tations for 31.--1 are based on the pressure distributions

calculated by Guderley and Yoshihara in reference 8; the

computations for other Mach numbers in this table are based

on shock-expansion theory. It is evident that the disturb°

ance field near the base is significant at low supersonic
Mach numbers where the bow wave is detached, and also at

hypersonic Mach numbers where the bow wave is very strong.
At moderate supersonic Mach numbers, however, the profile

disturbancd field in two-dimensional flow is negligible, and
conditions on a thin airfoil depend solely on the local surface

inclination. It follows ttmt the base pressure under such

circumstances is nearly independent of profile shape and
boattail angle. (If the angle of attack is small the base

pressure is also nearly independent of angle of attack under

these conditions.)
Table II, which is based on the method of characteris-

tics, applies to the cone-cylinder body of revolution shown,
and illustrates that the correction for the profile disturbance

field is not large if the afterbody comprises a cylinder several

diameters long. For example, at a Mach number of 1.5
for which the value of pdp,, is about 0.7, the value p'/T, =

0.98 corresponds to a correction of about 6.7 percent to the

base drag (since the base drag is proportional to (1-pdp.)).
Table III applies to a cone (/_=--10°), and illustrates

that the correction for such profiles can be sizable. At a

Mat.h numl)er of 1.5, for examl)h', tin' induced pressure fiehl
in this case amounts to over one-fourth of the base drag.

For larger apex angles, the corresponding correction for

cones call be considerably larger. It is to be noted that,
the induced pressure field usually rel)resents a much nmre

important, correction to base drag than the induced M,wh
number field.

J_st ahead or the blum In the original Ilow _s sueficienUy large, _ il $18 st_ficteotiy sm_l, tO

t#
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II. A SEMI.EMPIRICAL ,METHOD FOR CORRELATING BASE

PRESSURE MEASUREMENTS AND COMPARISON WITH

EXPERIMENTAL RESULTS

QUAUTATIVE EFFECTS OF VISCOSITY ON THE lJASF_PRF.SSURE FLOW

A sketch showing the qualitative flow characteristics for
the viscous-fluid tlow in tile region of the base is given in
figure 9. The flow along tile fil.'st exl)ansion wavelet starts

with the nonunifo,'m dislril)ution of Ma(.h number M, pres-
sure p, al{d with a I)oumlary-la.ver thickness $. Because

the ba_e preset,re is lower than the l)r_'sst,re p, a small fan

of expansion wavelets originates at point A. 'l'lw existence

• /// Espo_

////

.... c

Ftc,t'st 9.--Sketch of the vi._',omc-fluid flow in the neighborhood of the ba._e.

of dead air in a small volume immediately behind the base

is a resuh of the separation at point B. As a consequence
of the formation of a dead-air region it might be expected

that the pressure along the streamline BC is approximately
donstant. The qualitative form of the boundary-layer pro-

files at stations between points B and C must take on the
same nature as those existing at the boundary of a super-

sonic jet issuing into ambient air. Because of the viscosity

of the fluid, the dead air is induced into a circulatory motion
in the directions indicated by the small arrows in figure 9.

The viscous mixing process causes the boundary layer to

thicken as it approaches point C. In axially symmetric

flow there is an additional reason .for further spreading of
the streamlines in the boundary layer as the trailing shock
wa_.'e is approached Since the mean radius of a stream-

tube in the boundary layer continually decreases as the

trailing shock wave is approached, additional spreading is
brought about in order to keep the annular cross-sectional

area of the streamtubes approximately constant..

With this qualitative picture of the flow processes in mind,
a brief description can be given as to how the base pressure

arrives at its steady-state equilibrium value. To fix condi-

tions in mind, suppose a jet of air is pumped from the body
into the dead-air region and then is suddenly stopped. At

the instant the jet is turned off, ]mint C is far downstream

of its equilibrium position. Due to the scavenging effect
of the outside flow on tile mass of dead air, some of this

dead air is removed, thus causing tile angh, of turning at

the corner to be increa._cd and the presst,re of the dead-air

region to be decreased. The larger angle of turning in-
creases tile velocity outside the boundary layer, which in

turn increases the scavenging action, thereb.v again lower-

ing the pressure and sl,trting the cycle over again. Thus,

point C moves rapidly to a lmsition as close to the base as
possible. There is, however, at h,ast one importtmt lacier

which prevents point C from going as far toward the bttsc

as tim| point which would roughly represent tile limiting
solution for inviscid flow. As C movc,s toward the base,

tim pressure ratio of tile trailing shock wave !ncrcas_.,s,
making it more dill'|cult for the scavenged air and the low-
velocity air in the lmtimlary layer to overcome tile l)re_stlre

rise of tilt, shock wave and flow downstream. The opposi-
tion of this effect to the ones mentioned previously would
serve to establish equilibrium. It iippears, therefore, that a

satisfactory theory of base pressure wouhl have to consider
the mixing process in conj|,,iction with tile ira:|acid-fluid
characteristics of the outer Ilow.

BASIS FOR CORRELATION OF EXPERIMENTAL DATA

It is assumed that the flow expands over the corner of the

hase as illustrated in tigure 9. Tlu, base thickness t_ wouhl
be the trailing-edge thiek,wss in the case of two-dimensional

flow, and wouhi be the base diameter in the caste of axially
symmetric flow. An attempt to correlate the various

metuquremcnts of base pressure is made on the hasis of the

relationship

Pt'=J Ell', _, # ,_, (5)

which assumes that the base pressure coefficient corrected

for the profile disturbance field is affected by viscous effects
only through the ratio of boundary-layer thickness to base

thickness. Actually, even for a fixed value of _/h the base
pressure would be affected by anything that'affects-the

distribution of fluid properties within the boundary layer
or within the mixing layer downstream of the base. It

will be seen subsequently,, though, that in many cases the

above relationship yields acceptable results.
If the boundary-layer flow is laminar, then from dimen'

sional analysis and the classical considerations of the terms

involved in the boundary-layer equations, it follows that

5._ U/--_'_=J(.31, , profile shape)
y I,'_ .L,,

Rewriting this equation,

$ L/h

.-_=_J(M., profile shape)= 7___.Lh

%' l,,,

where C is a function of the..Mach number and profile shape,
but indcpendent of viscosity. For a given L/t,, variations

in profile shape affect the boutldary-layer thickm,ss prin-
cipally through the action of tile pressure gradients set i,p

by the Imrticular profile coatour. As a lirst approximation
the effecls of variations in pressure dis| ribut ion on Ihe thick-

hess of the I,ovmlary layer jl,st ahead of the base will be
neglected since these effects in nmst cases shouhl be snmll

compared to the effects of Reynolds number and L/h ratio.
Within tiw limits of this simplification, the above equation is

-8-
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applieabh' to any profih, shape or length. Hence in eornqat-
ing tile data for lanfitmr-lmundary-hD'er flow, the parameter

:L/(h-_'_,e) is use(I in the absence of direct measurements of

+/h.
In the case of turl)uh, nt flow a similar parameter ('aa l)e

obtained. By approximating tin, tnrbuh,nt Imumhu'.v-

layer protile with a 1/7-power law, the ratio ,Vh for low-
speed Ilow turns out to be inversely prolmrtional Io the

1/5 power of the l{e.vnohls mlmber. (For example, see
reference 9.) l.'sing this resuh, the approl)riate parameter

in eor,'elating I)ase-pressure data for turlnilent boundary-
layer tlow would be L/[h(Re)'S].

" EXeER|MENTAL DATA FOR TWO-DIMENSIONAL FLOW

At present the available experimental results on base

1)ressure in two-dimensioi|al flow are ratller limited, but they
are sufficient to provide a qualitative cl|eck on one particular
resvh of the invise'id-flow calculations; this restilt concerns

the essential difference, as indicated by the inviscid-flow

ealcltlations. I)etween the blkse pressure in two-dimensional
flow al|d in axially symmetric tlow. The absolute magnitude

of the base pressure coefficient for two,limensional inviscid

/low at a given Maeh number is represented by the limit of
the vahws for axially symmetric tlow as d/h approaches

unity in figure 6. For low and moderate supersonic Maeh
numbers this limiting value is several times the vahte for a

body of revolution, which, as will be seen later, is rep|'e.sented

in figure 6 by n d/h ratio somewhere between 0.5 and 0.8.
For high supersonic Math numbers the difference between

the two types of flow, according to figure 6, is small. These

considerations which indicate that, except at high supersonic
Maeh numbers, a pronounced difference should exist between

the base pressure in two-dimensional and axially symmetric
flow, are in agreement with existing data• In reference 10,
th¢ wind-tunnel nleasurements for two-dimensional flow over

a wedge airfoil at a Mach number of 1.4 and a Reynolds
number of 0.6 million indicate a value of --0.41 for tim base

pressure coefficient. .Measurements presented later for axi-

ally symmetric flow at the same Math number and Reynolds
number, however, indicate values around --0.20. This

large difference is in accord qualitatively with the considera-

tions based on the curves of figure 6.

In order to make a preliminary evaluation of the Reynolds
number effect on base pressure in two.dimensional flow,
some measurements have been made on a constant-chord

wing of finite span having a thick trailing edge. + Because
the ambient air near the wing tips can flow laterally around

tile tip and into the low-pressure region belfind the base, the

data cannot be considered as strictly representing two-
dimensional flow• Nevertheless, the ratio of span to base

thicknc_ (40) was sufficiently large on the wing employed

so that tip effects should not affect conclusions concerning

the qualitative influence of Reynolds number on base pres-
sure in two-dimensional flow. The resuhs of base-l)ressttre
measurements taken at a Mach number of 2.0 are shown in

tigure 10 (a). It is apparent that the base drag increases
considerably as the Reynolds number increases. Sin('(, the

surfaces of the wings were smooth, and the highest Reynohls

number attained w_,; l.S million, the data are representative
of |he case of lalnitmr Ih,w in the I_ou|,lary hlyer. A plot.

of these data against the parameter L/(h.t/--,re) is shown in

fiigure 10 (b). It is l- be noted that ia this form a straight

line can be flfired thrmtgh the tiara in the region covered by

the tests. For hn'ger values of L/(h_T,'_) tile line would be

expected Io mtrve and approach tit(, litw representing zero
base drag.
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Ftc, uai 10.--Mea._ured bane pressure on • finite-span wing; 5[.. -2.0, ratio of wing span to
t htckn_,s -40.

EXPERIMENTAL DATA FOR AXIALLY SYMMETRIC FLOW

Fortunately, there are sufficient experimental data avail-

able for axially symmetric flow to make a fairly extensive

correlation of P,' with the parameters L/(h,,_Re) and
L/[h(Re)U+], where h is now the base diameter. .Most of

these data have been obtained from wind-tunnel measure-

ments on bodies of revolution mounted from the rear by a

cylindrical support. Accordingly, a knowledge of the pos-
sible support and wall interference effects is necessary for
a satisfactory intcrl>re/ati(m .f the wind-tunael measure-

ments. Some exl)erinwntal data oil SUl)port interferenre

and reflected bow-wave interferen(.e are l)resenlcd in ap-
pendix B. It will s,lfh'e for the present purl_)ses to state
that the win(l-tunuel |netksurements were taken with a

support sting of sulficient unobstructed length so that no

interference effect of support lexkcth is present in the data.

L,ikewise, no appreciable interference resuhing from tile

, These d_ta wer¢ t_ken in the Ames l- by 3-fool supcro4nle wind tunnel No. I employing a wing of g-Inch span with • base-pcessure orifice located 1 inch outboard of (he plane of,symmetry.
-qo
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reflected bow wave is present in tile data. As regards the

effects of st, pport diameter, it is known from a relatively
eonq)lete set of interference measurenwnts made by Perkins

(reference 11), part of which is presented late,', that the data

taken at ._l[= 1.5 are essentially free of support interference.
At tile higher Math ,tumbe,_, howcve,', a rOlnl)lcte set of

SUllpOl't-dialneter interference n,t'astll'e,n('nts WIts not Inadc.

Consequently, some effect may be present i,t the data taken
at M=2.0 and .11=2.9. For consistency, these data which

may be affected to a small extent by support-diamrter
interference have been taken with a fixed value of 0.4 for

the ratio of support diameter to base diameter. By com-

paring the base pressure measured on varim,s bodies tested

with the same relative support diameter, the effects of body
shape can be deduced if it is a_sumed that changes in nose

shape do not produce significant changes in the support
interference. This is believed to be a valid assumption for

the body and support dimensions used.
In reducing the experimental data fo," correlation, the

measurements are first corrected for tile disturlmnce fiehl

induced by profile shape. All bodies of revolution I,se(I in

the present experiments consisted of either a cone-cylinder

(10 ° semiangle of cone) or an ogive-cylinder (10_'aliber
ogival radius) combination. In order to deternfine tile body-

.shape correction (P') tile pressure distribution over such

combinations has been calculated using the method of charac-
teristics. Two typical pressure distributions for a Mach

_-_-l_ " Oqive cyti_der
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FIGumz ll.--Typical pt_sure distributLon u determined by the method of characterL, qicl;
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number of 2.0 are shown in figure I1. For the reasons
explained earlier, el,' co,'rection/" is determined by selecting

the value of tlw l)rcssurc coeilicient existing on an extension

of the cylindrical afterbody at a location aPl)roximately
one diameter downstream of the base position. The val,ws

of 1" detcr,ninrd in this manner e,mble the corresponding

values of l'/ to Iw determined from equations (1) and (3).
The quantity l't' shollld not depend on the body shape for

a given M'. For all t)ut a few exceptional shapes, such as
a simple cone without an afterbody, tit(..M'ach number .1['

in the present tests i_ sufficiently close to the free-stream
Mach number to enable a direct comparison to be made

between various body shapes after correcting for the pres-

sure disturbance fiehl only. For these exceptional cases,

which represent small values of the length-diameter ratio,

bPb (M'--M=) is added to the
an additional correction _-,'iY/

right side of equation (1), so that the coml)arison of various
bodies is nmde on the basis of a constant .ll' equal to M..
Since even in an extreme case this latter correction is small

compared to P', the derivative _-1[ can be roughly estimated

without affecting the final results appreciably. For the

data to be presented subsequently, lifts correction wa._ made
only for tlmse bodies with a lengtlv-di,mwter ratio of 4 or

less, since it amounted to only 6 percent of the n]easurvd
data in the most extreme case (L/h=0.9) and was negligible

for the bodies with L/h greater than 4.

In attempting to correlate the available experiments it
will be convenient to consider first the case of laminar flow

in the boundary layer, and then the case of turbulent flow.

The experiments represeming the case of laminar boundary-
layer flow were conducted on bodies of revolution with

polished surfaces, and those representing turbulent flow

were conducted on the same models with artificial roughness
added in the form of a narrow transition strip. (See refer-

ence 12.) Ahhough for simplicity the data are referred
to simply as representing either laminar or turbulent flow,

in a few cases the actual boundary layer may be in tile
transition state. It is to be noted that with smooth models

transition (insofar as it affects base pressure) probably

begins at Reynolds numbers of the order of 4 million.

Likewise, with roughness added in order to obtain turbulent.
flow, the artificial roughness may not bring about complete

transition ahead of the base at Reynolds numbers less than
about 2 million.

Laminar boundary-layer flow approaching base.--Win'd-

tunnel measurements of the base pressure for various bodies.
of revolution at a M'ach number of 1.53 are shown in figure

12 (a). These data, taken from reference 12, include the

effect of variations in Reynolds number and I)ody shape.
The large effect of both Reynolds re,tuber and body shape

is evident. Since the bol,ndary-layer I]ow is laminar for.
these dala, the extent to which correlation is achieved is

most easily determiued by plotting I'_ as a funt.tion of
L/(h_'7_e). Figure 12 (b) shows tile data of figure 12 (a)

plotted in this form, from which it is evident that tile experi-
mental data correlate reasimably well to a single curve. The
scatter of the various measurements about the mean line

is attributed partly to the fact that the thickne_ and
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velocity profile of the boundary layer approaching the base,

and hence the base pressure, are not strictly a function

of the Reynolds mimber and length-diameter ratio alone.

The resuhs of some measurements of the base pressure

for various bodies with laminar boundary-layer flow at a

_Iach number of 2.0 are shown in figure 13 (a). The data

through which curves are drawn were taken in the Ames

1- by 3-foot sut)el_onic wind tunnel No. 1 under conditions

similar to the tests at a .XIach number of 1.53 reported in

reference 12. The remaining data points were obtained

from the experiments of Kurzweg (reference 13) by plotting
his data for insulated smooth bodies as a function of Mach

number, and reading the values of base pressure for'2_/. =2.0

from the faired curves. The same qualitative effects of

body shape and Reynolds number as were observed at a

.XIach number of 1.53 are evident from these data obtained

at the higher 5[ach number. Figure 13 (b) shows the data

of figure 13 (a) plotted in the form suitable for correlation

according to the theoretical considerations. Considering

the wide variety of body shapes tested, it can be seen that

these data also correlate reasonably well to a single straight

line. If the tests were extended to larger values of L/h,

this line presumably would curve and approach the ab.,cci_,cae
axis.

Turbulent boundary-layer flow approaching base.--The

results of wind-tunnel measurements of base pressure on

bodies of revolu.tion at a Mach number of 1.5 with turbulent

-ll-
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layer flow.

boundary-layer flow approaching the base are shown in

figure 14 (a). Also shown in this figure are the results

of free:flight measurements reported by Charters and

Turetsky in reference 5. It is evident from this figure that

the effect of Reynolds number on base pressure is small;

whereas figure 12 (a) shows that it is large in the case of

laminar boundary-layer flow.

The measured data of figure 14 (a) are shown in figure 14 (b)

plotted in the form suilai,h, for i)Url)OScs of corrch, ting eXl)cri-

mental data. Since the body-shal)(, correction _!") is

independent of vinous effe(:ts, tlt(, same corret'tions }lave

been used for the case of turl)ulcnt flow as wen, uscd for

laminar flow. It may be seen from figure 14 (b) that tlie

data correlate fairly well to a straight line.

Some eXl)Crim,,ntal data for turbulci_t boundary-layer

flow at a .M,ich numb(,r of 2.0 are shown in ligure 15 (a)

and the plot of 1%' against L/[h(Rt) _] is shown in figure

15 (b). The cur_'es in these figures show the same charae-
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teristic of relatively constant base pressure as was noted
above for turbulent boundary-layer flow at a Mach number
of 1.5. Again, there is a reasonably good correlation of

these data, as is evident from figure 15 (b).

COMPAR|SO,_ OF EXPERIMENTAL RESULTS _TH' TH_ INVISCID-FLOW
CALCULATIONS

Since the intercel>t (P_*) of a curve of P_' versus _/h is in-
dependent of the Reynolds number, some correlation (pos-

sibly only qualitative) might be expected between the ex-

perimental values o[ P_* and the in¢iscid-flow calculations,
provided allowance is made for the displacement effect of

the wake near the trailing shock wave. As long as the wake

thickness is well defined (re_onably steady wake) a simple

and plausible method of estimating Pj* would be to evaluate
the base pressure coefficient for maximum drag in an inviscid

flow wherein an equivalent solid object, such as illustrated
in figure 5, replaced the wake. Such an object would have
no effec_ in inviscid two-dimensional flow but would have a

pronounced effect in axially symmetric flow. If in axiMly
symmetric flow a rod of diameter d is considered to replace

the wake of diameter t, the resulting maximum drag in

inviscid flow would be the same as calculated in part I

where the corresponding base pressure cocfiicient was de-

signated by P,=. (See fig. 6.) Thus an estimate for the
variation of P** with Mach number in axially symmetric
flow would be
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&
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7 i
50 F_'ee fF_i_t; E/ZM_, Re_ 5
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i

1

• ,_ • L I;

o .o_ ._e .z4 .3z .eo .4a
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(a] M_a.sured data, ._,¢,_-2.0.

(b) CorreCtion of me_surod data, ._,1'_.2.0.

FIGUI_I¢ I-_.--,Messured and correlated b¢_ pressure data; .'_[=-2.0, turbuh'nt bo,,n_Ltr)--
layer flow.

d
P.* _P._ for _=_ (6)

and in two-dimensional fl0w it would be

P_* ,=P,_ (7)

Since a fluctuath_g wake presumably cannot be repIaced by

a rod without essentially altering the flow conditions near
the base, the above estimates cannot be expected under

such conditions t0 yield anything more than the right order
of magnitude.

Some information on the thickness and steadiness of the
wake has been obtained from an examination of numerous

spark photographs taken of p,_>jectiles in free flight. _ Typ-
ical spark photographs are shown in figure 16, and the re-

sults of measuring the wake thickness on a large number of

similar photographs are shown in figure 17. Figure 16 (a)

repre_nts the case of laminar flow in the boundary layer at
a free-stream Maeh number of 1.73. Under these condi-

tions the wake thickn_c,s appears to be reasonably well de-

fined, although the trailing shock wave is not well defined

near the wake. Figures 16 (b) and 16 (e) indicate that for
turbulent boumlary-layer flow on bodies of revolution the

trailing shock wave and the w_ke are not very steady at,
Maeh numbers below about 2. Thus it is not ._urpri._ing

t Tbe_ thadowgrtph$ were made available through the courtly of the Bell'-tic Rme_reh Labotatorl_, Aberdeen, Md.
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(e) .'*t',, -1._, tarb_lc,t.

Flo_ll 16,--8h_tOWl_aph_ of projectiles In flighl, (C<_'t4_¥ a_]_tl¢ Re_-ch _ho¢_
torles, Aberdeen, Md.).

r ............ .......

1

. ,.: , _ ; _ • .. , %

i

;

(d) ,_f_ -2.3.3, turbulent.

(e) Mm -3.64, turhulel|t.

Fl_ t_al 16.--Conduded,

that, as will be seen later, equation (6) is in poor agr,,emeut
with meastu'emP.ts for turl)uJent b<}tH_dnrx'-h_)'cr flow at,

._[a.ch mllubers below about 2. At higher Mach liumbers

the trailing shock wave "and the wake become more clearly

defined (figs. 16 (d) and 16 (e)), biat the accuracy of equa-
tion (6) in this region cannot as yet be tested because of

insufficien t e.xperimental data.
A comparison between inviscid-flow calculations and ex-

perimental values of Pc* is more direct for airfoils thau for

bodies of revolution since the wake thickness presumably
need not be accounted for in two-dimensional flow. The

value of P+* as determined from the finite-span wing data

in figure 10 (b) is --0.30. This is fairly ('lose to the limit-

ing pressure coefficient (Pc+) for two-_limensional flow, which
is -0..33 for a Ma('h nuntber of 2.0. (.'q,'t" fig. 3.) Dt.linite

conclusiotts as to the signilicance of this ,green=on=. J=,>w-
ever, will have to ._wait+ the rcs.lts of mcasurement_ <)n air-

foils at other .Ma<'h nlll|ll+ers, and on ,irfoils with turlmlcnt,

flow in the bou,_d,ry layer.

-13-
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For laminar flow on bodies of revolution at N[aeh Ituntbrl_

of 1.5 and 2.0, the wake thieknrss U/h) f,'om figl,rr 17 is

0.55 and 0.49, respectively. From figure 6, the rom,sl)ond-

ing values of Ph are --0.25 and --0.29. rcspr('tively. (),L
the other hand, the values of 1'_* determined from tl,,

intercepts of the extrapolated lines in figt, res 12 (b) and 13 (b_
are --0.24 and --0.20. rcsl)ectively. Hence, ahimugh the

incise:d-flow calculations may provide a reasolml)le al)proxi-
mat:on for two-dimensional flow near M=2.0, and for

axially symmetric flow near 31= 1.5, there is a.serious dis-

crepancy _th the experimental results for axially s.vm-
metric flow at :11=2.0. This large discrepancy indicatrs

that the simple relation given by equation (6) which at-

tempts to COlmeet Pt* with the invisci(l cah.t,lations is not

always a satisfactory al)proximation. The good agree|nrnt
obtained in two of the three cases may be entirely fortuitous.

Ad<litional cxl)erilncnts are needed to clarify this point.

.8

" _. s '_ rd-a,/on t.

_ • - Lominor

_.,_

_i 2 3 4
Moch ¢_jmber, M_

Etc, Ul_l 17: Wake th,ckncss a.s a [unction of Mach number (determined from shadowgraphs

o[ the Bal,istic Resanareh Laboratories, Aberdeen, bid.).

The fact that the incise:d-flow calculations agree quali-

tatively, though not quantitatively, with expe,'imental

results can be seen by a comparison with nwast, rcmelns of
the bast pressure at various Math numbers b.ut with an

-essentially constant Reynolds number. Figure 18 sho_:s

so,he experimental free-flight data of Charters (reference 5)
together with the corresponding wind-ttmnel data of Kurz-

weg (reference 13), and the present inxestigation. 6 These
exl)erimental data are for turbulent flow in the boundary

layer. In this figure the ordinate of the cur_'e labeled

"curve based on equation (6)" is proportional to the value

of the limiting pressure coefficient P_t determined at each
3Iach number in the manner indicated by equation (6). It

is apparent that the curve based on the calculations of Pa t
for inviscid flow gi_'es the righ/+ order of magnitude for the

base pressure coefficient, but does not give good quantitative
agreement. As an incidental point, it" may be noted that

the various wind-tunnel and free-tligl|t me,_.;ureluents shown
in this tigure agree quite well at all .Math nt, mbers.

VARIATION OF BASE PRF_URE WITH REYNOLI_ NUMBER FOR NATURAL

TRANSITION

Since the base pre_ure is different for laminar and ttll'l}u*

lent bounllary-layer flow app,-oaching the base, it is of
inter.est to examine the result._ of nw,k,+t,rements in the

intermediate range of Reynohts number where the transition

, i 1 I
I I

o Free-fhqht, 3<R. xlO'*<5)_ - '
d free-fliqht, 3<R.x|O'*<6] _'er5

Wind t_r_elj Ra'4,0xlO e
Wind tu_nel, Ra" 4.ONTO*

= o Wind funnel_ Re ° _. 5x t O*

:z5 <T-- ] LIh=S
a Wind tunnel, 2<R.xlO'*<4.5, Rof 13

, o° \;-cu,-v,, on

' 1
l

O_ 2 3 4

Moth number, MoB

Fl(;,t'tt t I8.--Vsrtation of kts¢ i_'=_u, re coefficient _t'ith .Mach numt_er for turbulent bollndary

tater Ilov,

"point" moves from a position downstream of the base to a

position upstream of the base. Figure 19 shows the resuhs
of some base-pressure measurenaents at a .Mach number of

2.0 on a body of revolution in die Reynolds number range
from 0.4 million to 10 million: At Reynohls numbers below

about 2 million, where the boundary-layer flow is laminar,
the base pressure coefficient depends to a great extent on the

Reynolds number, as was noted earlier. In the Reynohls

number range from 4 to 6 million, where the transition point
moves ahead of the base, the base pressure again is sensitive

to changes in the Reynolds nttmbet" (and pr(,sumably also

-2O

Lominor

Turbulent

o Wir_ T_r_r_ I No. I
• Wi_d Tur_el No.

_-.15

_ -.10:

_-.0 5

0 2 4 6 8 IO, tO_

Reynolds number, Re

Fic_t'alt 19.--Voriation of be_ pce_ure voefficicnt with aeynohls ,=umber for natural

Lr'_taition; ._.[_ .2.11.

* In the present experlmenta me_uremeota _u._i_nally were made in mor_ thai, one fat:lit)-. For example, the three experimental poln_ In _gtlre t8 rcp¢caenting lhe wind-tunnel data at

.Much nttmb¢_ near 1.5 _preeenl mtu.$uremenkt with th."_ different hOgties. _1 q
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to other fa<'toz_ afferting transition such as surface rough-
heSS, free-s,'tl'eltnl turl>llh, nt.e, tln<l rate of heat transfer).

At tile higher Reynolds nunll)el+ where a turl)ulent boumhu'y
layer exists for some distance ahead of the base, the bast.
1)ressure is not sensitive to changes in tile Reynolds nun+lwr.

Front the viewl)oint of reliahly extrapolating small-scale

measurements, it is eat'out'aging that the base 1)ressure coclli-
cient for tut'bulelxL boundary-layer flow is not sensitive to
vhanges ill:the Reynolds number. At a -_.[aeh number of

2.0 this in,onsitivity is evident from a comparison of the data
for the model with tin L/I+ of 5 in figures 15 (a) and 19. At
a Reynol_is iiuntber of 2XI0 +, where turbulent flow is at-

tained ou..'the motlels by using artificial roughness, the base

pressnre coefficient does not <lifter by more than 3 or 4 percent
from the.value at a Reynolds numberof lXl07, where tur-
llulent flow is attained without such an artifice. At a ._la(.h

number of 1.5 the inca.inurements indicate this same charac-

teristic, as can be seen front the data given in figure 20.
These data nt the somewhat lower Maeh number do not

show any appreciable dependence on Reynolds number

within the range from 2X10 + to 1.6X107. It is interesting
that the free-flight data of Hill anti Alpher (reference 14)
also show no significant effect of Reynolds number within

-.28

-.2,I

_20

<

_'.16

o

t_

-,12

qU

".OO--

-.O4

0/0,

the range from 2XI07 to 1X10 a. These latter data, howeve,'.

give a widely different valuc for tim base presstlre. It is
evi<lent front ligllre 20 that the base pressures measured ill

referenre 14 differ from Ihe rallies of references 5 and l'l

and tim present wind-tunnel tests because of some fnel+w

other thaa <lifl'rrrnres in ]{eyli<ll(ls number. The po._,dl,le

effects of support interference in the present wind-tunat,l
tests would not appear to contribute any appreciahle amount

to this discrepancy for two reasons. First, good agreement is

obtained at all Mach numbers between tile present wind-
tunnel tests and. the free-flight firings of Chart.ers; and

second, the measurements of support interference asdescribed

in apl)endix B indicate that for the support dimensions used

(d/h=0.25 and d/h=0.40 in fig. 20) these effects aro an order

of ntagnitude smaller than the observed discrepancies.

Since the models of reference 14 were equipped with tail fins

of sufficient size so that their presence at moderate supersonic

Math numbers might be expected to lower considerably the

pressure in the vicinity of the dead air (algebraically lower

the effective P'), it, would appear that the ob_erve(l dis-
crepancy is attributable to the effect of tail fins on base

pressure. _ ,.

Remarks

Salt bond attached
Salt bond attached

Mochmecl surface on pro jet tiles
.OOS its wire. attached

Pal/shed surface on model

Polished sue face on model

fTn$ attached to missile

T Sut_tequent e_,perimentl conducted at the Ames l._borltory by J. R. 8pshr tad R. R. Dickey have showxl that thl$ fit the q;s,tl.

-L_--
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CONCLUDING REMARKS

Tile simplest approach to an analysis of base pressure for

supersonic flow is that of considering the flow of an inviscid
fluid. Ahhough such an approach has produced many

useful theories when applied to other aerodynamic problems,

it produces results of very limited value when applied to the
present problem. The inviscid-fluid theory indicates that

the only possible b_se pressure for a body of revolution
without a_od attached to the base is the free-stream static

pressure. ,XIoreover, this simple theory also indicates that for
two-dimensional flows, as well as axially', symmetric flows
with a rod attached to the base, there are an infinite number

of possible solutions for a given body shape and Mach
number. •

The first of the above-mentioned shortcomings of inviscid

theory can be remedied by allowing qualitatively for Ihe
existence of a wake, since by ._ doing the high-velocity

streamlines are displaced from the axis of symmetry and a

base drag other than zero can be obtained. The second
shortcoming, of having an infinite number of possible

solutions from which to choose, is not easily remedied. In

particular, the comparison between the inviscid-flow eal-
cuiations and experiment has shown that if the limiting flow

pattern (max'imum drag possible) at each Maeh number is

singled out from the infinity of possible inviscid-flow solu-
tions, then the characteristics of base pressure observed

thus far can be explained, but only qualitatively. Thus, the
experimental finding that an increase in support diameter

behind a body of revolution can considerably decrease the

base pressure is explained by an interpretation of the behavior
in an inviseid-fluid flow. Also, the experimental result of a

'much lower base pressure in two-dimensional flow (at low

add moderate supersonic Mach numbers) than in axially

symmetric flow is satisfactorily explained by the inviscid-flow

calculations. As regards quantitative res_tlts, though, the

calculations based on the maximum drag possible in inviseid

flow do not agree with lho observed effects for lurlmlent

boundary-layer flow, and agree only in certain eases with the
observed effects for laminar boundary-layer flow.

In an attempt to formulate a more at't'urale qua,ltitative

analysis a semi-empirical analysis has heed developed. The
available experimental data correlate reasonably well when

the base pressure coefficient, corrected for the effects of profile

shape, is plotted as a function of a parameter which is
approximately proportional to the ratio of boundary-layer
thickness to base thickne_. As a result of this correlation

several general conclusions can be drawn. One stich com.lu-

sion is that the variation of base pressure with Reynohls

number is small at high Reynolds numbct_ where the bound-
ary layer approaching the bas4, is turbuh,nt, but is large at

low Reynolds numbers wlwre the I_oumlary layer is laminar.
Another conclusion is that the etfect on base pre_ure of

the disturbance field induced by profile shape can be ade-

quately explained on the basis of inviscid calculations.
In order to develop a thorough understanding of the

behavior of base pressure in supersonic flow, further experi-

mental and theoretical investigations are required. At

present, experimental results are especially needed as regards
the base pressure in two-dimensional flow, even at low

supersonic .Math numbers. Experiments conducted at high

supersonic Maeh numbers are also needed, both for two-
dimensional flow and for axially symmetric flow.

AMES AERONAUTICAL LABORATORY,

_'_'ATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

MOFFETT FIELD, CALIF., May II, 1950.
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APPENDIX A

AXIALLY SYMMETRIC FLOWS CONVERGING TOWARD THE AXIS

Tile rather anomalous result obtained when applying the
method of characteristics to base-pressure flows can be

clarified by examining tlle equations of motion on which the
method olbcharactcristics is based. The differential equation

for the velocity potential 4, of an inviscid axially symmetric
compressible flow is (see reference 6, for example)

where a is the local velocity of sound, x is the coordinate

measured parallel to the direction of the undisturbed stream,
and r is the radial coordinate. If a transformation is made to

a new system .(_,_) of curvilinear coordinates, where _ and
are distances measured along the two _Iach lines issuing from

a point, then the equation of motion for the velocity potential
becomes simply (the details of the algebra involved in making

this transformation may be found in reference 6),

_2¢ sin 2a 5¢
b(b_ r br (A2)

where a is the local .Xlach angle_ It is to be noted that the

•new variables have the simple physical significance that lines
of constant _ and _ are the Maeh lines of the flow. The

derivative of the velocity.potential in any given direction is
,the projection of the velocity vector along that direction,

and the order of differentiation in equation (A2) can be

interchanged. With

_-_----p _-_ffi=q (AS)
and

b_
--_V=W sin 0
5r

where w is the velocity vector inclinded at an angle 0 with

respect to the axis, it follows from equation (A2) that along
.Mach lines

d=sin 2 a sin2 ap -- vdn dq=--_ vd_ (A4)
r ;"

Th.us, dp is the increment in the projection of the velocity

vector along the _ direction when passing a distance d_ in

the pilysical plane along the n direction, and dq is the in-
crement in the projection of the velocity vector in the

direction when passing a distance d_ along the _ direction.
Equations (A4) are the fundamental equations used in the

step-by-step construction of a supersonic flow by Sauer's or
Frankl's method of characteristics.

The reasons for the singular behavior as the flow approaches

the axis of symmetry can now be explained with the help of

equations (A4). Suppose a series of steps were lai,i off

in the i)lD'sical plane in the manner indicated by the sketch

shown in figure 21 (a). The small increments (d_ and d_)

along the .Mach lines are laid off such that they are always

small compared to the distance from the axis r and also such

that for all steps d(/r and d_/r are always very n_arly equal
to a constant, say _;. It is to be noted that if such a flow
converging to the axis is possible, then there would be an

infinite number of such steps along the streamline hB in
figure 21 (a).

^ d (Z)

I "-,
7

t
1 Axis of s)erra_ePry V

B
(.)

" /

/

fb)
(a) Assumed flow in the physical plane.

(b) Increments in hodotraph plane corresponding to figure 21 (a).

FIGUgg 2l,--Characteristic$ construction for flows vonverging to the axis.

Now consider the increments in the hodograph plane

corresponding to those laid off in the physical plane (fig.

21 (a)). Figure 21 (b) illustrates the way, according to
equations (A3) and (A4), in which the increments must be

laid off in the velocity plane. Points having the same num-

ber in figures 21 (a) and 21 (b) rcl)r,.._,.Itl tl,, same t)oint in

the flow. Let the smallest tiver|lg(, .\lath angh, along the
steps in the physical plane be a=, and the snlallest vertical-

velocity COmlmnent be v., then for all steps along A8

idp]>lv .'_ sin' a.,l = const an t

[dq!> Iv._ sin* a,,l---eonstant

.- ,s
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This means that every increment in the hodograph plane is

greater than a constant value. This vMue cannot be zero
unless l)oints 1 and 3 arc ide,ltical, whirh wouhl represent

the exceptional case of a "revct_ed" conical tlow. On

passing from point A to point B there arc, however, an
infinite number of such incrcmrnts. They must be laid out

along the arc of a circle in the hodogral)h plane since AB
is a streamline of constant, pressure. Hence, before reaching

point B tile inclination angle of the velocity vector must be

greater than 46 ° (approximate maxinmm deflection angle
through a single shock wave fo," "y=l.4). Because this
situation obviously prevents a shock wave from being fitted
into the flow, there resuhs a contradiction to the assumption

that the over-all flow is po_ibh,. It appears, therefore,

that these flows are not always possible.

The preceding discussion, though not a mathematically
rigorous exposition, points out the reason why the inclination

angle e of a free streamline can increase at an excessive rate
as the axis is approached. The source of the trouble is

inherently associated with the last term in the equation oi'
motion (A1), since it has r in the denominator and a non-

vanishing factor in the numerator. The appearance of r
in the denominator of this equation stems entirely from the

continuily equation. This leads to a qu,litative exphmat ion
of the ohscrv4,d I.,Imvior ,w.r tl._ axis of th. inviscid Ih,ws.

Consider the changers that must occur on going from poin!
1 to point 3 ill the physical plane (fig. 21 hDt i. If th(. Ilow
were two-dimensiomd, then the free _lrcandine wouhl be

straight and 0t wouhl equal #3, thereby p,'t.s,,'ving the ,r, ss-
sectional area between two adjacent strcttmliues on passing

from 1 to 3. The term involving l/r does not occu=" for

plane flow and no dif_culties arise. In the axially symmetric
case, the fundamental condition is agaiu Ihat the cross-

sectional area of an annular strcamt,bc must be .preserved,
since w_ is equal to w=. This means that for purely t_eonwt ric

reasons the streamlines heunding the a,mular streamtuhe

must spread apart as the axis is approached. In ord(,r to

have the pressure at point 3 equal ix) that at point 1, the
free streamline curves tow,rd the axis. permitting the

bounding streamlines to spread, thereby allowing tile

continuity eq(tation to be satisfied. Bccaose of the 1/r term

in the continuity equation, the curvature rapidly'incrcus(.s

as the axis is approached. Hence, before the axis is reached,

the inclination of the free streamline exret,tls the largest

value which any oblique shock wave call po_.dbly overcome.

APPENDIX B

WIND-TUNNEL SUPPORT INTERFERENCE AND REFLECTED BOW.WAVE INTERFERENCE

When a body of revolution is tested in a wind tunnel it is

usually supported from the rear by a cylindrical rod. As a
result the measured values of base pressure may be consider-

ably affected, for one thing, by the presence of the suppoIt.
Support interference on base pressure is a complicated func-

tion of the diameter of support rod, the unobstructed length

of support rod, the Mach number, and the Reynolds number.
• If, as is the case for the experiments refeiTed to herein, the

support length is much greater than the base diameter, then
the only appreciable interference must arise from the "dia-.
meter effect" of the rod. From theoretical considerations

certain inferences can be drawn regarding the resulting sup-

port-diameter interference on base pressure.
For a fixed Mach and Reynolds number, an increase in the

support diameter brings about two different effects. Flint,
the wake thickness is increased, thereby making it possible

for lower base pressures to exist. (See fig. 6.) A second effect

resulting from an increase in support diameter is that the
appropriate dimensionless boundary-layer thickness 5�(h-d)

is increased, thereby tending to increase the base pressure.
The two effects, therefore, oppose each other. :For values Of

d/h near unity the second effect must pr(,donlinatc; wh(,reas

for small values of d/h the first effect would (on the basis of

fig. 6) be expect('(/ to predominate, especially at low st, per-
sonic Mach numbers.

Before comparing these theoretical considerations with
experimental measurements of tit(, cffe(.t of variations in d/h

it will be advantageous to first cousidcr the effects of having

only a finite length of unobstructed support rc,d. To examine
this effect, base-pressure measurenwnts have b(,eu taken

unobstructed support. In these experinwnts tile model was

located at a fixed position in the test section so as to eliminate

possible effects of axial pressure gradients along the test
section. The results from 31=2.0 and 2.9 are illustrated by

the curves in figure 22, which show, for d/t, =0.3, no change

Q: -.24

•_' M." _.0,
_-.16

_ -.08

I

M.'&O, lamina,"-

iurbukn t - _ "'"
"-.. ,0.. _" y 0

,:,'..

o..- r " -M_ 2.,9,

/ 2 3 4 5
Rafio of xupport lenqth to bose d/ameter

FIGt'IUC 22.--EffeCt O( $1]ppOr¢ length on ba._P prc'_ure; d/h-0.3,

turbulen f

with a constant value of d/t,, but with various lengths ofl support diameter is progressively, increased.

6

in base pressure if the support length is greater than about•

3 base diameters. Since support lengths of over 4 body
diameters have been used in all sul_scquent tests, it ix con-

eluded that any interference in the wiml-tunm,l measurentcnts

of base pressure at 31=2.0 and 2.9 ix not altributabh, to
effects of support length.

The results of hase-pressure mcasuretm.nts for various

support diameters with laminar boundary-layer Ilow are

shown in figure 23 (a). The data for a Math nutnber of 1.5

(reported by Perkins in reference 11) show tile expected
increase, and then (,ventual decrease in base drag as the

At a Mach
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nmnber of 2.0 tile data show a monotonic decrease in base

drag as the support diameter is increased. Schlieren photo-
g,'aphs show that the wake thickness t/h varies from approxi-

mately 0.5 to 1.0 as d/h varies from 0 to 1.0. Consequently,

it turns out that the behavior of tile three curves in figure
23 (a) is qualitatively the same as would be indicated if

equation (6) were used to estimate P_*. (It is to be remem-

bered that t/b is the "effective" d/h of fig. 6.)
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FIGt'I_IE: 23.--EtTect of support diameter on base pressure.

Tile corresponding results for turbulent boundary-layer
flow are shown in figure 23 (b). At Mach numbers of 1.5

and 2.0 these data show the same trends as for laminar

boundary-layer flow, but at a Mach number of 2.9 the trend

is not the same. At Mach numbers near 3, and possibly
higher, it appears that the relative importance of the two

above-mentioned effects of increasing d/h depends on the
condition of the boundary-layer flow.
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It may be noted from figure 23 (a) that thrre is one point

corresponding to d/h=O on the curve representing laminar
flow at a .X,'l'ach numl)er of 1.5. This point, which was

determined from the measurements using a side support,
gives the same value for the base pressure as exists for a

support wilh a d/h ratio of about 0.3. At all the other .Xlach
nulllbers, where special interference measurements were not

made, the base pressure was measured with a constant value

of 0.4 for the ratio d/h. From the curves in figure 23 (a) it

may be inferred tltat, at least for Reynolds numbers of the
order of 4 million, these base-pressure data for laminar flow

are not significantly affected by SUl)port interferen'.ce.

Unfortunately, an investigation of support interference for

turbulent boundary-layer flow has not been made using a side

support. Definite quantitative statements about the pos-
sible effects of support interference in the turbulent-flow data

(figs. 14. 15, 18, 19, and 20) cannot be made at present.
Evidence that the combined effects of support and wall

interference are not large, however, is given by the good
agreement obtained at all .Mach numbers between the

free-flight firings of reference 5 and the various wind-tunnel

measurements (riga. 14, 15, 18, anti 20).
A possible source of wall interference arises front the

reflection of a bowwave from the side walls, and tile eventual
intersection and interaction with the wake at some down-

stream position. This interaction for M=2.0 anti .11=2.9

occurs at a position varying from 7 to 22 base diameters

downstream of the base. Since the large disturbance caused

by the balance housing has no measurable effect at distance

of 3 base diameters from the base (see fig. 22), there is no
reason to expect that the base-pressure measurements at

M=2.0 and M=2.9 might be affected by reflections of bow

waves from the tunnel side walls. At a .Xlaclt number of 1.5,

however, tile downstream position of interaction is closer; it

varies from approximately 2.7 base diameters for tile model
with an L/h of 7, to 5.4 base diameters for the model with an

L/h ratio of 4.3. In view of the possible interference from

reflected bow waves at low supersonic _fach numbers, a

special investigation was made in 1946 prior to the tests of

reference 12 to determine the magnitude of this effect. The

results, taken at a Nfach number of 1.53, _ are presented here
as they aid ia evaluating the accuracy of the wind-tunnel

measurements of base pressure, and they show that the

conclusion of Faro. (reference 15) regarding the magnitude of
the bow-wave interference effect in the present experiments
is incorrect.

Figure 24 illustrates the test setup employed in evaluating
the effect of a reflected bow wave on base pressure. Because

of symmetry the two outer dummy models caused two shock

waves, similar to reflected bow waves, to interact with the

wake behi,ld tile base of tile center mo,h,l (on which tile base

pressure was measured). By varying the distance between

tile dummy models of the test setup, the position of inter-

action was reattily changed. The strength of the bow wave
on tile models employed (6-caliber ogival radius) in this

special investigation varied from approximately two to eight

times the strength of the bow wave on the various models for
r,c,r,= =.--Co,,_lo,J,.d. which base-p,'essure data are presented.

t This Mach nblo.tber did'era tomewhstt from that of more recent tests (at .U'-1...50) since the earlier _ts 'were conducted in 1_ at • time when the l- by 3-foot super,&onie wind tunnel "*'as

temporarily equipped v.,-ith a Set of fiJted nettle blocks, it_tead of .the fleMbie plates nov." employe_ #q .,F
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FIr, CR_; 24.--Sketch o[ test setup used for determining the cllcet of a reflccte(l bOV," w_ve or, b:t._e pre_ure,

Sehlieren photographs of the flow for two different posi-

"tions of interaction, and two different Reynolds numbers,
are gi_,en in figure 25. The distance z, from the base to the

position of interaction, is equal to 2.5h in both figures

25 (b) and 25 (e). This particular position simulates the
closest position to the base of the interaction of reflected

waves in the present tests. The corresponding base-
pressure measurements * without and with the interference

wave present are illustrated in figure 20 by the circle and

triangle symbols, respectively. The data show no appreci-
able effect on base pressure of the shock wave wliieh simu-
lates a reflected bow wave.. If a reflected bow wave comes

too close to the base, however, then large i/_terference
effects are possible, as illustrated by the sqnal'e symbols in

figure 26, and the corresponding schlieren photographs in

figure 25 (d). Except for purposes of illustrating this effect,
base-pressure measurements were, of course, not taken

under these latter conditions of important interference
from reflected waves. Since the simulated reflection waves

of the models used in this special investigation were several
times stronger than the bow waves on the models for which

the base pressure was measured, it is clear that the wind-

turn,el measurements presented are not appreciably affected

by interference of a reflected bow wave.

t These data fall slightly below other data presented herein because of the very small amount of boattalling on the models used in this special investigation.
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APPENDIX C

DERIVATION OF APPROXIMATE EQUATION FOR q'Iq=

The ratio q'/q. can be written as

q' p'U'= P' _° P° 1+2 (C1)
q_= p. v.----_= ;: p:__ _.

In this and subsequent equations, powers higher than =lie

AU U'--U. are assumed to be
first of quantities such as _-_=m U.
small in comparison to unity, andare therefore neglected.
In equation (C1), #° and _° represent the stagnation densi-
ties corresponding to conditions in the frec stream and to
conditions just ahead of the base, respectively. Designating
AM'--M'--._/. and again considering only" first-order
terms, it follows that

+_,-- l M.'J l

1- M=nM _po (C2)

where Ape is the loss in total pressure on passing through

the nose shock wave, and may often be neglected. From
the energy equation

AU _17'=-_.T7 = c.(T.IT')_c.T.( T' T.)v:= 2u.= = V?- --_, 1 T.T-:

or, using c,=7R/(7-- 1) and 5I= U/_._RT

aM

,,,.,)
(03)

hence the combination of equations (CI), (C2), and ((:'3_

gives

(,4. ) ,-,,
_= 1 + - M. _ . 1,. (C4)q" • 1+_ M.-

The pressure coefficient P' is related to AM and Ap, by

p,= p'--p. 2 (p' _° po
z _.M,,=CStO 7. r-,v.
2

_ _+__A._t.," ,--_

V_-lr'= [ 1 +_--_ .ll '2

2_.11

M.(1 +Z_ ?,I.')

1)=

(J-'v'_-ll=p.

2 3p,

"r.ll. "_po
(C5_

Substitution of equation (C5) into equation (C6) yields the
relation

(,+ .,,.,)g
presented earlier as equation (3).
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TABI,E I.--VAI, UES OF M' AN D ;J' FOR A T%%O-DI M ENSIONAI.

All{FOIL

6 #

2 2

M.. AI* p'tp_

1 I. 25 0. 73
I.b 1.50 1.0h

2 2.(_0 I.OO

3 2. g9 I.UI

8 7. N_, 1.14 J
•* 82 1

TABLI_ II.--VALUES OF M'

AND p' FOIL A CONE-

CYLINDI.iR BODY OF

REVOLUTION

/0'

1

M. M" ,] P':P® 1

1.5 1.51 i 0._

2 2.02 I .97

7. 02

L

TABLE III.--VALUES OF M

ANI)/,' I:()I{ A ('()NE

10 °

.W., M' p',p_

1.5 1.5_ 0,88
2 20g .Hi"
3 3, 13 .82
7 ! 7. 16 .76

i
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